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Field theoretic approach to the counting problem of Hamiltonian cycles of graphs
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A field theoretic representation of the number of Hamiltonian cycles of graphs is studied. By integrating out
quadratic fluctuations around the saddle point, one obtains an estimate of a number which reflects character-
istics of graphs well. The accuracy of the estimate is verified by applying it to two-dimensional square lattices
with various boundary conditions. This is an example of how to extract meaningful information from the
quadratic approximation of the field theory representation.@S1063-651X~98!14306-4#

PACS number~s!: 05.50.1q, 02.10.Eb, 05.20.2y, 82.35.1t
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I. INTRODUCTION

Let G5(V,E) be a graph with a set of verticesV5$r j%
and edgesE5$ek%. A Hamiltonian cycle of a graph is a
closed path which visits each of the vertices once and o
once. I denote the number of all the Hamiltonian cycles o
graphG by H(G):

H~G!5 (
Hamiltonian cycle onG

1. ~1!

See Fig. 1 for examples.
Hamiltonian cycles have often been used to model c

lapsed polymer globules@1#. The quantityH(G) corresponds
to the entropy of a polymer system inG in a collapsed but
disordered phase. One can model even more realistic p
mers by introducing a weight that depends on the shap
cycles in Eq.~1!. The polymer melting problem is studied b
taking into account the bending energy with a weight wh
depends on the number of turns on the cycle@2#. In Ref. @3#,
the protein folding problem is studied by incorporating t
van der Waals potential as well as the bending energy
model ~1!.

For homogeneous graphs~lattices! with N vertices, one
expects thatH(G) behaves like

H~G!→C~G!Ng21vN ~N→`!, ~2!

wherev is defined by

ln v5 lim
N→`

1

N
ln H~G!. ~3!

The quantityv is supposed to be a universal bulk quanti
whereasC(G) and g depend on the detail of graphs, e.g
boundary conditions@4#.

A field theory representation for Eq.~1! for arbitrary
graphs was introduced in Ref.@5#, and has been used to stud
the extended models@2,3#. For homogeneous graphs with
number of verticesN and the coordination numberq, the
saddle point approximation of the representation yields
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H~G!.S q

eD N

, ~4!

or v.q/e. This approximation has been proved to be go
in many examples@6#. For a square lattice,q/e54/e
51.4715 . . . isquite near to the exact valuev.1.473 esti-
mated by direct enumeration@7# and other methods@4,8,9#.

In the saddle point approximation, however, graphs w
identical (q,N) are not distinguished. Indeed there is a va
ety of graphs which have (q,N) in common. Given a graph
with a pair (q,N), it is often possible to change its bounda
conditions to modify the ‘‘topology’’ and ‘‘moduli’’ of the
graph, keeping the pair. Figure 1 shows examples. Moreo
there are graphs which have identical (q,N) but have distinct
local structures, e.g., the two-dimensional~2D! triangular lat-
tice and the 3D cubic lattice.

In this paper, I go beyond the saddle point approximati
I work out the quadratic approximation and find an estim
for H(G) whoseG dependence is not merely through (q,N)
but is more sensible. To demonstrate the validity of the
proximation, I examine 2D square lattices with a variety
boundary conditions and aspect ratios. It is also examine
the estimatev.q/e is improved.

II. FIELD-THEORETIC REPRESENTATION

The problem of calculatingH(G) is mapped into one in a
lattice field theory onG @5#. This is done by introducing an

FIG. 1. Examples of graphs and the Hamiltonian cycles
them. One does not distinguish the base points and the direction
a cycle. ~a! H(G)51 for this graph.~b! P(3,4), the 2D square
lattice with the periodic boundary condition. A Hamiltonian cycle
drawn in the thick line. For this graph, (q,N)5(4,12).~c! SP~3,4!,
the 2D square lattice with the skew-periodic boundary in the h
zontal direction. It is locally isomorphic toP(3,4), but the bound-
ary condition makes it distinct globally.
128 © 1998 The American Physical Society



ti

-

a

ca
o
s

it.
e

e

PRE 58 129FIELD THEORETIC APPROACH TO THE COUNTING . . .
O(n) lattice field fW (r )5„f1(r ), . . . ,fn(r )… ‘‘living’’ on
V5$r j%, with an action

S@fW ~r !#5 1
2 (

r ,r 8PV,1< j <n

f j~r !~ iD211e!rr 8f j~r 8!. ~5!

TheN3N matrix D is the adjacency matrix@10# of the graph
G:

D rr 85H 1 if r ,r 8PV is connected by anePE

0 otherwise,
~6!

and an infinitesimal parametere.0 is introduced for con-
vergence.

The integerH(G) is related to a 2N point function by

H~G!5 lim
n→0

lim
e→10

1

n UZ1

Z0
U, ~7!

Z05E DfW e2S[fW ~r !] , ~8!

Z15E DfW e2S[fW ~r !] )
r PV

fW 2~r !

2
, ~9!

whereDfW 5) r PV,1< j <ndf j (r ). Equation~7! holds for arbi-
trary G with N.2, because each term in the diagramma
expansion corresponds to a Hamiltonian cycle.

III. APPROXIMATION

I first evaluate Eq.~7! by the saddle point method. I con
centrate onZ1, sinceZ0→1 asn→0. When a graphG is
homogeneous, there are mean field saddle points which
degenerate on

$fW ufW 2~r ![22iqe%.
O~n!

O~n21!
, ~10!

where

1

qe
:5

1

q
2 i e. ~11!

This yields estimate~4!.
I then consider fluctuations around the saddle point. It

easily be seen that there are zero modes corresponding t
global O(n)/O(n21) symmetry and sublattice symmetrie
@5#. Therefore I am led to introduce a gauge fix condition

(
r PV

f j~r !50 ~2< j <n!. ~12!

By the standard Fadeev-Popov method, I have
c

re

n
the

Z15E Df e2~
1
2!(r ,r 8PV,1< j <nf j ~r !~ iD211e!rr 8f j ~r 8!

3U(
r PV

f1~r !Un21 pn/2

GS n

2D )
2< j <n

dS (
r PV

f j~r ! D

3 )
r PV

fW 2~r !

2
. ~13!

The factor u( rf1(r )un21pn/2/G(n/2) is the Fadeev-Popov
determinant multiplied by the volume of the gauge orb
Actually, this is nothing but the Jacobian for th
n-dimensional radial coordinate for constant modes.

Expanding the fieldfW around the saddle point as

f j~r !5A22iqeI N,nd j 11c j~r !, ~14!

where

I N,n511
n21

2N
, ~15!

one obtains

Z15S qe I N,n

ie
D NIN,n

2~n21!/2Nn21
pn/2

GS n

2
D

3E DcW e2
1
2( r ,r 8PVc1~1!A

rr 8
L

~n!c1~r 8!

3e2
1
2( r ,r 8PV,2< j <nc j ~r !A

rr 8
T

~n!c j ~r 8!

3e2Vint~cW ! )
2< j <n

dS (
r PV

c j~r ! D , ~16!

whereAL(n) and AT(n) are the inverse propagators of th
longitudinal mode (j 51) and the transverse modes (2< j
<n), respectively:

Arr 8
L

~n!5 i ~D21!rr 81
i

q
I N,n

21 d rr 81~11I N,n
21 !ed rr 8

1
1

N

i

qe
~12I N,n

21 !, ~17!

Arr 8
T

~n!5 i ~D21!rr 82
i

q
I N,n

21 d rr 81~12I N,n
21 !ed rr 8. ~18!

One neglects the interaction termsVint(cW ) and performs the
Gaussian integrations. Finally,e is sent to10 to yield

Z1.S q IN,n

ie
D NIN,n

~2N!~n21!/2
pn/2

GS n

2
D

3F ~2p!~N21!/2

det8 1/2AT~n!
G n21

~2p!N/2

det1/2AL~n!
32. ~19!
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The last factor 2 corresponds to the residual symme
( rf1(r )↔2( rf1(r ). The prime on det means the omissio
of the eigenvalue for the constant mode.

One notices that the signature of the real part~the last
term! of Eq. ~18! changes atn51. Thus one has to assum
n.1 to derive Eq.~19!. Then in Eq.~19! one takes the limit
n→0 to obtain the final result

H~G!.S q

eD N

e1/2~ I N,0!
NIN,0Ap

N

det81/2
„AT~0!D…

det1/2
„AL~0!D…

.

~20!

Note that detD det8AT(0)5q det8„AT(0)D…. Equation~20!
is nothing but the estimate I desired to have. The sad
point result (q/e)N is corrected by the ratio of determinan
which contains information of details of the structure ofG.

In Ref. @5#, it is claimed that the quadratic correction
Eq. ~4! vanishes. In the present analysis, the Fadeev-Po
method is worked out to findAp/N missing in Ref.@5#. As
shown in Sec. IV, the ratio of determinants is not equal
unity and contributes tog andC(G) nontrivially. Moreover,
inclusion of i 5A21 ande.0 in action ~5! in the present
analysis enables one to discuss the limit of application of
quadratic approximation in Sec. IV.

IV. SQUARE LATTICES

To see how Eq.~20! works, I study the concrete example
P(L1 ,L2) and SP(L1 ,L2) shown in Fig. 1. Both are two
dimensional square lattices with edge lengthsL1 andL2. The
difference betweenP and SP lies in boundary conditions
For P(L1 ,L2), the periodic boundary condition is impose
for both two directions. For SP(L1 ,L2), the boundary condi-
tion across the edgeL2 is replaced by the skew-periodic on
They are good examples to test Eq.~20!. One can switch the
boundary condition or vary the aspect ratioL2 /L1 to make
the graph globally distinct while keeping (q,N)5(4,L1
3L2). The saddle point approximation cannot ‘‘see’’ th
difference among them, but Eq.~20! has a chance to distin
guish them.

FIG. 2. The number of Hamiltonian cycles forP(L1 ,L2) for
odd L j as a function ofL2 /L1 , normalized by the saddle poin
result (4/e)L1L2. Plotted are the quadratic approximation to the fie
theory ~solid square: 3<L1 ,L2<29; dashed line: the limitL13L2

→`), exact results obtained by enumeration~box, L13L2<39),
and estimates by biased Monte Carlo simulations~solid box, L1

3L2&90).
y
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GraphsP(L1 ,L2) and SP(L1 ,L2) can be viewed as dis
crete tori with different moduli parameters. Thus it is al
interesting in its own right to determine the asymptotic b
haviors of H„P(L1 ,L2)… and H„SP(L1 ,L2)… in the limit
L1 ,L2→`.

I analytically evaluate Eq.~20! for P(L1 ,L2) and
SP(L1 ,L2). In the momentum representation, the determ
nants become (s50 for P ands51 for SP!

det8„AT~n!D…5 ) 8
0<nj<L j 21

H 12
1

2I N,n
FcosS k11s

k2

L1
D

1cosk2G J , ~21!

det„AL~n!D…523 ) 8
0<nj<L j 21

H 11
1

2I N,n
FcosS k11s

k2

L1
D

1cosk2G J . ~22!

The constant modek15k250 is excluded in)8. Hereafter,
the indicesnj andkj should be related bykj52pnj /L j .

The formula

)
0<m<L21

Fx222x cosS u1
2mp

L D11G
5x2L22xL cos~Lu!11 ~23!

enables one to obtain

det8„AT~0!D…

det„AL~0!D…

522L1L2I L1L2,0 )
n250

L221
u2~k2!

u1~k21p!
, ~24!

where

u6~k!5H y~k!L11y~k!2L162 for P

y~k!L11y~k!2L122 cosk for SP,
~25!

y~k!52I L1L2,02cosk1A~2I L1L2,02cosk!221. ~26!

FIG. 3. The log plot of the number of Hamiltonian cycles f
SP(L1 ,L2) for oddL j as a function of arctan (L2 /L1). Normalized
by the saddle point result (4/e)L1L2. The plots are the same as i
Fig. 2.
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Now I specialize to the case where bothL1 andL2 are odd.
In the limit N5L13L2→` with R5L2 /L1 fixed, it is al-
lowed to approximate)n2

by exp(*dk2 ln) after separating

quickly oscillating factors. In this limit, assuming 0,R<1
for periodic case, I obtain

H„P~L1 ,L2!…

.S q

e
D NAp

2

sinS 1

2R
D 1/2

expS 9p2

16R2
2

1

2RD 1/2

cosh2S p2

4R2
2

1

2RD 1/2 ,

~27!

H„SP(L1 ,L2))

.S q

e
D N

A2p

sinS 1

2R
D 1/2UsinhS 9p2

16R2
2

1

2RD 1/2U
Usinh2S p2

4R2
2

1

2RD 1/2U .

~28!

One sees that the quadratic approximation predicts the
plicit form of C(G) and the fact thatg51 in Eq. ~2!. It is
remarkable that the correction is independent ofN in the
limit. That is, it implies that the estimates forv are un-
changed.

Figures 2 and 3 show the plot of Eqs.~27! and ~28! nor-
malized by (4/e)L1L2 as functions ofL2 /L1 ~solid line!. The
finite L1L2 results~20! for odd L j such that 3<L j<29 are
also shown~solid circle!. For the purpose of comparison,
plot the exact numbers of Hamiltonian cycles~box! and es-
timates of them by simulations~solid box! for L j odd @11#.

The exact numbers are determined by direct enumera
by a program inC. Table I shows the result. This program
useful only for small graphs, because the time needed
calculation increases exponentially withL13L2. The simu-
lation is based on the biased Monte Carlo method wit
code inC. The time needed again grows exponentially w

TABLE I. Exact number of Hamiltonian cycles forL13L2 2D
square lattice with periodic (P) and skew-periodic~SP! boundary
conditions. Determined by the direct enumeration.

L1 L2 H„P(L1 ,L2)… H„SP(L1 ,L2)… H„SP(L2 ,L1)…

3 3 48 55 55
5 3 390 397 866
5 5 23 580 29 001 29 001
7 3 2982 2 989 13 021
7 5 1 045 940 1 108 006 1 820 582
9 3 23 646 23 653 195 157
11 3 196 086 196 093 2 924 373
13 3 1 682 382 1 682 389 43 820 323
x-

n

or

a

L13L2 but with a smaller exponent. I have used direct en
meration forL13L2<39 and Monte Carlo simulation fo
L13L2&90. The evaluation of Eq.~20! takes time propor-
tional to L13L2. Therefore, Eq.~20! has an advantage eve
if it is approximate.

Figures 2 and 3 suggest that the quadratic approxima
to the field theory is reliable. The field theory succeeds
predicting that the correction depends almost entirely
L2 /L1 , and that there is a qualitative difference betweenP
and SP. TheL2 /L1 dependence of the correction genera
agrees with the exact result, though there is a slight devia
in the smallL2 /L1 region.

There is a definite discrepancy atL2 /L15p2/2 for the
skew-periodic case. The quadratic approximation~28! di-
verges atL2 /L15p2/2, as seen in Fig. 3, while the exa
result takes finite values and is simply increasing there.
tually, one can argue thatL2 /L1*p2/2 is out of range of
application of Eq.~20!. As I mentioned, I defined the limi
n→0 as the continuation fromn.1 where the Gaussian
integral converges. Let us look at the evolution of the sp
trum of „AL(n)D… on the way fromn.0 down ton50. The
eigenvalue for thekj5(121/L j )p mode hits zero at some
0,nc,1 if

2I L1L2,0,cos
p

L1L2
1cos

p

L2
. ~29!

This condition is equivalent toL2 /L1.p2/2 in the limit L1
3L2→`. Thus one suddenly has a zero mode atn5nc , and
no symmetry is responsible for it. This suggests that the q
dratic approximation breaks down there and that Eq.~28! is
not reliable for such values ofL2 /L1. A careful analysis
shows that the periodic case is free from such spurious z
modes.

V. SUMMARY AND DISCUSSIONS

I have found an approximate formula for the number
Hamiltonian cycles of graphs by the quadratic approximat
to the field theoretic representation. It has been tested f
2D square lattice with a variety of boundary conditions
have obtained a multiplicative correction which is indepe
dent of the sizeN5#V. That is, a dependence on the boun
ary conditions is obtained, and is shown to be in good agr
ment with the true behavior.

A natural extension to the present problem is the count
of the number of closed self-avoiding walks that visitf N
vertices of a graph, where 0< f <1 is fixed. In that case
form ~2! can still be assumed butC(G), g, and v now
depend onf . There is a field theoretic representation f
v( f ) called lattice cluster theory@12#. It is not identical with
Eq. ~7! even for f 51. It is interesting to compare the qua
dratic approximation of the lattice cluster theory@13,14# with
the present result. In the former theory, the estimate forv( f )
is improved over the saddle point approximation forf ,1.
For f 51, the estimate forv5v(1) is unchanged in accord
with the present case.
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