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Field theoretic approach to the counting problem of Hamiltonian cycles of graphs
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A field theoretic representation of the number of Hamiltonian cycles of graphs is studied. By integrating out
guadratic fluctuations around the saddle point, one obtains an estimate of a number which reflects character-
istics of graphs well. The accuracy of the estimate is verified by applying it to two-dimensional square lattices
with various boundary conditions. This is an example of how to extract meaningful information from the
guadratic approximation of the field theory representafi&i063-651X98)14306-4
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I. INTRODUCTION N

H(G):<9

4
Let G=(V,E) be a graph with a set of verticés={r;} ©
and edgesE={e,}. A Hamiltonian cycle of a graph is a or w=g/e. This approximation has been proved to be good
closed path which visits each of the vertices once and onljn many examples[6]. For a square latticeg/e=4/e
once. | denote the number of all the Hamiltonian cycles of a=1.4755 . . . isquite near to the exact value=1.473 esti-
graphG by H(G): mated by direct enumeratidii] and other methodgt,8,9.
In the saddle point approximation, however, graphs with

identical (@,N) are not distinguished. Indeed there is a vari-

H(G):Hammon;ncyde oG L (1) ety of graphs which haveq(N) in common. Given a graph
with a pair (@,N), it is often possible to change its boundary
See Fig. 1 for examples. conditions to modify the “topology” and “moduli” of the

Hamiltonian cycles have often been used to model colgraph, keeping the pair. Figure 1 shows examples. Moreover,
lapsed polymer globuldd]. The quantityH(G) corresponds there are graphs which have identicgl ) but have distinct
to the entropy of a polymer system @ in a collapsed but local structures, e.g., the two-dimensiof@D) triangular lat-
disordered phase. One can model even more realistic polyice and the 3D cubic lattice.
mers by introducing a weight that depends on the shape of In this paper, | go beyond the saddle point approximation.
cycles in Eq(1). The polymer melting problem is studied by | work out the quadratic approximation and find an estimate
taking into account the bending energy with a weight whichfor H(G) whoseG dependence is not merely througi K)
depends on the number of turns on the cyék In Ref.[3], but is more sensible. To demonstrate the validity of the ap-
the protein folding problem is studied by incorporating theproximation, | examine 2D square lattices with a variety of
van der Waals potential as well as the bending energy iffoundary conditions and aspect ratios. It is also examined if

model (1). the estimatav=q/e is improved.
For homogeneous grapliiatticeg with N vertices, one
expects thaH(G) behaves like Il. FIELD-THEORETIC REPRESENTATION
H(G)—C(GIN" toN  (N—so0), @ The problem of calculatingl (G) is mapped into one in a

lattice field theory orG [5]. This is done by introducing an

wherew is defined by %

1 nandbana
N w= lim Nln H(G). (3 %#——P $+

N—ox $
The quantityw is supposed to be a universal bulk quantity, I:I %

whereasC(G) and y depend on the detail of graphs, e.g., %_é
boundary condition$§4]. @ ® ©
A field theory repre_sentatlon for Eq1) for arbitrary FIG. 1. Examples of graphs and the Hamiltonian cycles on
graphs was introduced in R¢b], and has been used to s_tudy them. One does not distinguish the base points and the directions of
the extended mode[§_,3]. For homogene_zous graphs with a 5 cycle.(a) H(G)=1 for this graph.(b) P(3,4), the 2D square
number of verticedN and the coordination numbey, the  |agice with the periodic boundary condition. A Hamiltonian cycle is
saddle point approximation of the representation yields  grawn in the thick line. For this graphg(N)=(4,12).(c) SR3,4),
the 2D square lattice with the skew-periodic boundary in the hori-
zontal direction. It is locally isomorphic tB(3,4), but the bound-
*Electronic address: hig@rice.c.u-tokyo.ac.jp ary condition makes it distinct globally.
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O(n) lattice field (r)=(¢y(r), - - . ,dn(r)) “living” on lef D¢ o~ (D3 cvazj=ndi(NA 146 i)
V={r;}, with an action
n—1 n/2

r
- % 5 ‘
SéNI=3 3 HOEA (). 6) &, 40 F(E)zslln (EV ‘“”)
r,r’eV,lsj=n 5
TheNX N matrix A is the adjacency matriXL0] of the graph H2(r
g q 0 o

1 ifr,r’ eV isconnected by aneE The factor |2, ¢4(r)|" 1#"4T'(n/2) is the Fadeev-Popov
(6 determinant multiplied by the volume of the gauge orbit.

Actually, this is nothing but the Jacobian for the

n-dimensional radial coordinate for constant modes.

Expanding the fieldp around the saddle point as

™10 otherwise,

and an infinitesimal parameter>0 is introduced for con-

vergence.
The integerH(G) is related to a R point function by (1) = \/m5jl+ gi(r), (14)
. o 1lz4 where
H(G)=Ilm lm —|z=|, (7)
n—0e—+0" ZO n-1
Inn=1+ 55 (15
ZOZJ D¢ e Se, (8  one obtains
NIy o n/2
) B3(r) zl=(q€|N’”) v T
lef D e S]] ¢ ’ (9) ie n
rev 2 rl—
2
whereD ¢=1I, .y 1=;<,d¢;(r). Equation(7) holds for arbi- IS AL )
trary G with N>2, because each term in the diagrammatic Xf Dy ™ 22 eviatAy (il
expansion corresponds to a Hamiltonian cycle. ) ;
Xe7Ezr,r’eV,Zsjsni//j(r)Arrr(n)'//j(r’)
Ill. APPROXIMATION -
i ) X e~ Vinl¥ S . , 16
| first evaluate Eq(7) by the saddle point method. | con- e zsljlsy] g\, ¥i(r) (16

centrate onZ,, sinceZ,—1 asn—0. When a graplG is

homogeneous, there are mean field saddle points which avéghere A-(n) and AT(n) are the inverse propagators of the

degenerate on longitudinal mode [=1) and the transverse modes<(?
<n), respectively:

N ) O(n) .
2(r)y=—2iql=——, 10 - I -
{9lin=—2iad=50=7; (0 Al (=13 Byt b (L1 ed,
where 1 _
TN (I, (17)
1 1
—i=——le. (11 . o i .
de 4 Al (N)=i(A )r,,—a|N,n5rr,+(1—|N,n)earr,. (18)

This yields estimat&4). _ ) .
| then consider fluctuations around the saddle point. It cafP® Neglects the interaction teris,(y) and performs the
easily be seen that there are zero modes corresponding to t&USSian integrations. Finally,is sent to+0 to yield

n/2

global O(n)/O(n—1) symmetry and sublattice symmetries | Ninn
[5]. Therefore | am led to introduce a gauge fix condition 1:(q : N'”) (2N)(n-172
3
rZV $i(r)=0 (2<j=<n). (12) 2
€ X|: (277)(N71)/2 n-1 (27T)N/2 < (19)
By the standard Fadeev-Popov method, | have det Y2AT(n) det2al(n)
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FIG. 2. The number of Hamiltonian cycles fét(L,L,) for FIG. 3. The log plot of the number of Hamiltonian cycles for

oddL; as a function ofl,/L,, normalized by the saddle point gp( . L.) for odd L; as a function of arctanL(,/L,). Normalized
result (4€)“1"2. Plotted are the quadratic approximation to the field by the saddle point result (@‘2. The plots are the same as in
theory (solid square: L 4,L,=<29; dashed line: the limit, XL, Fig. 2.

—), exact results obtained by enumeratidrox, L, X L,<39),

and estimates by biased Monte Carlo simulati¢sslid box, L,

XL,=90). GraphsP(L,,L,) and SP(;,L,) can be viewed as dis-
crete tori with different moduli parameters. Thus it is also

: interesting in its own right to determine the asymptotic be-
The last factor 2 corresponds to the residual symmetry . iors O%H(P(Ll,LZ))g and H(SP(L,,L,)) in i/heplimit

3, d1(r)— —Z,¢4(r). The prime on det means the omission Ly Lo
. 1 .
of the eigenvalue for the constant mode. | analytically evaluate Eq.20) for P(L,,L,) and

ter%n(?f r|]§0tlc((_’]e_sg)tzr?;r:hzss;?nnf’ijr?rhogstr;?]gehaalsrit?)“islzjaqe SP(L4,L5). In the momentum representation, the determi-
a. 9 o nants becomed=0 for P ando=1 for SP

n>1 to derive Eq(19). Then in Eq.(19) one takes the limit

n—0 to obtain the final result K
det AT(mA)= [T’ (1— cos( k1+0—2)
q\N 7 det 2(AT(0)A) 0=nj<L;-1 2N Ly
H(G)= —) eIy NN\ S——
e ’ N det2(A-(0)A)
(20) +cosks,| |, (21
Note that detA det AT(0)=q det (AT(0)A). Equation(20) 1 K
is nothing but the estimate | desired to have. The saddledefA-(n)A)=2x []’ 1+ 57— cos( Ki+ a'—2>
point result g/e)N is corrected by the ratio of determinants O=nj<Lj-1 2l L
which contains information of details of the structure®f
In Ref. [5], it is claimed that the quadratic correction to +cosk, } (22)
Eqg. (4) vanishes. In the present analysis, the Fadeev-Popov

method is worked out to find'7/N missing in Ref[5]. As T L
shown in Sec. IV, the ratio of determinants is not equal toThe constant modk, =k,=0 is excluded irll". Hereatter,

unity and contributes tey andC(G) nontrivially. Moreover, the indicesn; andk; should be related by =2mn; /L ;.

inclusion ofi=+—1 ande>0 in action(5) in the present The formula
analysis enables one to discuss the limit of application of the omar
guadratic approximation in Sec. IV. X2 —2x cog( 0+ ——|+1
o<m<L-1 L
IV. SQUARE LATTICES =x?t—2x" cogLh)+1 (23

To see how Eq(20) works, | study the concrete examples

P(L.,L,) and SPL,,L,) shown in Fig. 1. Both are two- enables one to obtain

dimensional square lattices with edge lendthsandL,. The Lo—1

difference betweerP and SP lies in boundary conditions. det (A"(0)4) = —2L.L.l [ u-(ka) (24)
For P(L,,L,), the periodic boundary condition is imposed de(A-(0)A) 2ol 2o us (ko + )

for both two directions. For SRB(,L,), the boundary condi-

tion across the edde, is replaced by the skew-periodic one. where

They are good examples to test EB0). One can switch the

boundary condition or vary the aspect ratig/L; to make y(k)'1+y(k)"t1+2 for P

the graph globally distinct while keepinggN)= (4., u. (k)= y(K)ti+y(k)~Li—2 cosk for SP, (29

XL,). The saddle point approximation cannot “see” the
difference among them, but E€RO) has a chance to distin-
guish them.

y(k)=21_ 0~ Ccosk+ /(2,0 cosk)*~1. (26)
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TABLE |. Exact number of Hamiltonian cycles far; XL, 2D
square lattice with periodicR) and skew-periodi¢SP boundary
conditions. Determined by the direct enumeration.

Ly L, H(P(Li,Ly) H(SPLiLy))  H(SPL,,Ly))

3 3 48 55 55

5 3 390 397 866

5 5 23580 29001 29001

7 3 2982 2989 13021

7 5 1045940 1108 006 1820582
9 3 23 646 23653 195 157
11 3 196 086 196 093 2924373
13 3 1682 382 1682 389 43 820 323

Now | specialize to the case where bdth andL, are odd.
In the limit N=L;XL,—o with R=L,/L, fixed, it is al-
lowed to approximatel'[nz by exp(fdk, In) after separating
quickly oscillating factors. In this limit, assuming<OR<1
for periodic case, | obtain

H(P(L1,L2))

1 1/2 977_2 1 1/2
sinl —| ex - —
(q)N\/; 2R 16R2 2R
- 2

e 2 1\ 12 '
costf| — — —
4R? 2R
27
H(SP(L,L>))
1 1/2 971_2 1 1/2
sin(—) sin -—
q\" o 2R 16R? 2R
=(—] 2
(e> T 2 1 12
sintf| —— —
4R? 2R
(29)

L, XL, but with a smaller exponent. | have used direct enu-
meration forL,XL,=<39 and Monte Carlo simulation for
L, XL,=<90. The evaluation of E¢20) takes time propor-
tional toL, X L,. Therefore, Eq(20) has an advantage even
if it is approximate.

Figures 2 and 3 suggest that the quadratic approximation
to the field theory is reliable. The field theory succeeds in
predicting that the correction depends almost entirely on
L,/L,, and that there is a qualitative difference betw&en
and SP. Thd., /L, dependence of the correction generally
agrees with the exact result, though there is a slight deviation
in the smallL,/L4 region.

There is a definite discrepancy b /L,=m?/2 for the
skew-periodic case. The quadratic approximat{@s) di-
verges atl,/L,=7?/2, as seen in Fig. 3, while the exact
result takes finite values and is simply increasing there. Ac-
tually, one can argue that,/L,=?/2 is out of range of
application of Eq.(20). As | mentioned, | defined the limit
n—0 as the continuation froom>1 where the Gaussian
integral converges. Let us look at the evolution of the spec-
trum of (At(n)A) on the way frorm>0 down ton=0. The
eigenvalue for thekj=(1—1/L;)7 mode hits zero at some
o<n.<1 if

o o
21 1, 0< com +cot. (29

This condition is equivalent th,/L,>?/2 in the limit L,

X L,—o. Thus one suddenly has a zero modeat,, and

no symmetry is responsible for it. This suggests that the qua-
dratic approximation breaks down there and that @§) is

not reliable for such values df,/L;. A careful analysis
shows that the periodic case is free from such spurious zero
modes.

V. SUMMARY AND DISCUSSIONS

| have found an approximate formula for the number of
Hamiltonian cycles of graphs by the quadratic approximation
to the field theoretic representation. It has been tested for a

One sees that the quadratic approximation predicts the eD square lattice with a variety of boundary conditions. |

plicit form of C(G) and the fact thaty=1 in Eq. (2). It is
remarkable that the correction is independentNoin the
limit. That is, it implies that the estimates fes are un-
changed.

Figures 2 and 3 show the plot of Eq27) and (28) nor-
malized by (4é)1-2 as functions oL, /L (solid line). The
finite L,1L, results(20) for odd L; such that 3<L;<29 are
also shown(solid circle. For the purpose of comparison, |
plot the exact numbers of Hamiltonian cycld®x) and es-
timates of them by simulationsolid box for L; odd [11].

have obtained a multiplicative correction which is indepen-
dent of the sizeN=#V. That is, a dependence on the bound-
ary conditions is obtained, and is shown to be in good agree-
ment with the true behavior.

A natural extension to the present problem is the counting
of the number of closed self-avoiding walks that visi
vertices of a graph, where0f<1 is fixed. In that case,
form (2) can still be assumed b@&(G), y, and o now
depend onf. There is a field theoretic representation for
w(f) called lattice cluster theorjd2]. It is not identical with

The exact numbers are determined by direct enumeratiokq. (7) even forf=1. It is interesting to compare the qua-
by a program irC. Table | shows the result. This program is dratic approximation of the lattice cluster the¢iys, 14 with
useful only for small graphs, because the time needed fathe present result. In the former theory, the estimatevidr)

calculation increases exponentially with XL,. The simu-

is improved over the saddle point approximation fer 1.

lation is based on the biased Monte Carlo method with &or f=1, the estimate fow=w(1) is unchanged in accord
code inC. The time needed again grows exponentially withwith the present case.
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